
256 IEEE TRANSACTIONS ON MICROWAVE THIEORY AND TECHNIQUES March

‘+ ‘2+-E’
I

+
Fig. I—Simple frequency discriminator,
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Fig. 2—Quadrature frequency discriminator.

Several advantages of the arrangement

may be quoted:

1)

2)

3)

4)

An (r, 6’) display can be used so that
flK ,$Xf.

Using an (r, f?) display, o continuously
and linearly increases with frequency

over any range, although, of course,

ambiguities occur in a range of C$
exceeding 27r. “Clock” systems to give

increased accuracy without ambiguity
are possible. In this context, fre-

quency ranges representing Zmr <+

<2(n+1)~ Of 10 Mc and 10,000 Mc
are equally practicable.
lE, ]i–[E,12~l E~l–l Ezlwhen E,=

cos q$/2 and EZ = sin +/2 so that

errors due to departure from square
law in the detector characteristics are
very small.
The subtraction I E, 12– I EzI z may be

written

(E’2+E’’2+2E’E” COS ~) – (~’2+E”2

– 2E’E’f cm+) = 4E’E” Cos 6

where E’ and E“ are the input volt-
ages to a phase-measuring hybrid
junction, and E’#E”. It may be
shown that the product (E’E”), for

both the phase measuring junctions,
shown in Fig. 2, is not dependent
upon equality of power split in the

power dividing junctions and that
therefore this equality is not neces-
sary for good frequency measuring
performance.

It should be noted that the four-junction
circuit, giving the sine and cosine terms, is
the same as that for a single-sideband modu-
lator and is one of a large family of multi-
port networks that might be used in phase
comparison applications. For example, an
eight detector device giving cos ~, cos (~

+7r/4), cos (@+rr/2) and cos (o+3r/4) out-
puts can easily be realized. Such an arrange-
ment shows improved measuring accuracy
by removing quadrantal error terms.

STEPHEN J. ROBINSON
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Harmonic Generation

by an Array

In the millimeter region, harmonic gen-

erators have long served as convenient

signal sources. However, the power handling

capacity of the diode elements is very lim-

ked. At the short-wave end of the milli-
meter spectrum, the dominant mode wave-

guide terminal of a harmonic generator may
also be less desirable than a quasi-optical or
beam output. These factors have led to the
investigation of a diode array as a millimeter
wave source. The results obtained show that
such an array is feasible but uneconomic

with presently available diodes.

A schematic diagram of a harmonic ar-

ray is shown in Fig. 1. The fundamental

power illuminates an array of receiving

apertures from a feed horn which may be

extended (as shown by the broken lines)
to shield the entire input region, if desired.
Depending on the spacing between feed aud
array, it may be necessary to introduce
phase correction by means of a lens, or by
changing the lengths of input waveguide in
each multiplier unit. These units consist of
a receiving or input horn coupled to an

inline harmonic generator. The output

guide is proportioned to pass only the de-
sired harmonic and higher terms which

are neglected. Each output horn occupies

the same cross section as the corresponding

input aperture. This provides grating lobe
suppression, since a narrower element pat-

tern compensates for the wider spacing at
the output frequency. The output is in the
form of a beam, which can be brc,ught to a
focus by choosing the proper phase correc-
tion on either the input or output side of the

array.
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Fig. l—Harmonic array.

To investigate the properties {of a har-
monic array, a 2 X 5 element array was con-
structed for j~ = 25 Gc, n =2. A very simple

straight-through element, as shown in Fig. 2,

was used, The individual crystals produced
an input VSWR between 4:1 and 6:1 in
this mount. Measurements on individual
elements showed that the standard devia-
tions in insertion phase shift and conversion
loss were less than 25° and 1.7 db respec-

tively for the 27 individual 11N26 crystals
tested. The harmonic output of the array
was within 1 db of the output calculated for
the sum of the individual elemeuts, each
with the measured VSWR, and illumination
corrections applied. It was therefore con-
cluded that a harmonic array functions as a
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Fig. 2—Harmonic array element.

true additive structure. The array is shown
in Fig, 3.

The performance of the experimental

array shows conversion and coupling losses

of about 20 db and 6 db respectively. With
provisions for impedance matching in the

elements, and with more efficient harmonic
generators, a useful array source for milli-
meter and possibly submillimeter power
might be constructed.
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Analogous Propagation Modes in

Inhomogeneous Plasma and

Tapered Waveguide

An interesting analogy exists between
the propagation of transverse electromag-
netic (TE) waves in a plasma (with no mag-
netic field) and in conventional waveguide.1 z
This analogy reflects the similar roles played

by the volume conduction current in the
plasma and the wall conduction current in
the waveguide and is of interest in that it
provides insight into plasma propagation
and suggests the possibility of simulating
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certain microwave properties of inhomo-

geneous plasma by means of appropriate
waveguide configurations.

Consider a rectangular waveguide with

short dimension (b) in the x direction, long

dimension (a) in the y direction, and axis

in the z direction. Propagation in the TEIQ
mode is described by the wave equation3
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where the cutoff frequency CO,= ~c/a and c

is the velocity of light.
Similarly, propagation of a TE wave in

the z direction in an infinite plasma is de-
scribed by the equation4 vt DIRECTIONOFPROPAGATION‘a-

C

T ‘4
~+ (:)2 [1- (:) ’]E. =O (2)

I

(b)

where the plasma frequency ol = (4rne2/vz) 112.

The plasma wave equation (2) is formally

identical with the waveguide equation ( 1 )
with the plasma frequency L.Jp playing the
role of the cutoff frequency co..

In what follows it will be found instruc-

tive to develop the equivalent transmission
line for TE propagation in an infinite
plasma. \Ve first write the two Maxwell

curl equations for a plane wave propagating
in the z direction:

Fig. l—Equivalent transmission lines. (a) For
wavegulde. (h) For plasma.

.1

Z=zc

Fig. 2—(a) Tapered waveguide. (b) Equivalent
plasma density distribution.

shunt member can support propagation.
When OJ<UP, however, the shunt member

becomes inductive and the system can
not support propagation.

Further insight into the analogy be-

tween plasma and waveguide propagation
can be gained by examining the displace-
ment current and the conduction current in

the two cases (Fig. 1). In the waveguide
case the transverse conduction current

flowing in the walls is – (2~ic/aab) V and

the transverse displacement current is
(2iaa/7rbc) V.’ Propagation occurs at fre-

quencies such that the displacement current

exceeds the conduction current; cutoff occurs
when the two are equal, i.e., u.= m/a, as in
(1) above. This criterion is, in fact, a way of
defining cutoff in a waveguide. Similar rela-
tions hold in a plasma. The difference is
essentially one of geometry. The conduction
current and displacement current flow in the
same volume in the plasma whereas the

conduction current in a waveguide is con-
fined to the walls while the displacement

current is concentrated at the center.
The foregoing considerations indicate

the possibility of simulating certain prop-

erties of inhomogeneous plasma by the use
of waveguides with varying cross section.
To analyze this possibility we find it con-

venien t to use the radial waveguide ( sectoral
horn) configuration shown in Fig. 2(a),
writing the wave equation in cylindrical

coordinates:

and the solution that remains finite at the
origin is R = JM(k.r) where k =Q/c and
~ = 2m)~. The quantity P can also be written

in terms of r., the ‘{turning point, ” Le., the

value of r at which the kt term in (5)
vanishes; the solution for the radial wave-

guide problem is then

dHu

–[

47r nez i “ 1~ E=;L7z=7mac
(3)

E. = fup(kr’) CDS/Jo (6)
where use has been made of the relation

aj/df = (ne2/tiZ)E.* The equivalent line volt-
age V and current 1 are related to the elec-
tric and magnetic fields iby appropriate
constants of proportionality that are con-
~-entionally adjusted to make the average
propagated power equal to the product of

the equivalent voltage and current, but
these constants need not be evaluated in the
present case, Irriting (3) in terms of V and

1 we obtain the equations

where p = ~./K and X = h/27r.
tVe now consider the wa,,-e equation for

propagation of TE waves in an inhomo-
geneous plasma whose density is a function
of z only:

()
2

V2E– V(V. E) – : & z)E = O. (7)

We are interested in propagation at normal

incidence [Fig. 2(b) ] so that I?ti =E. = O,

a/ax =a/ay=o, V E= aEt/ax=O; the ef-
fective dielectric constant for the inhomo-

geneous plasma is given by

dI i av iu
const — (OJPz— Wz)l’; ~z– = const — 1

az = ox C.z

which are to be compared with the standard
transmission-line equations i31/& = — YV
and a V/az = —21. Evidently the admit-
tance of the plasma Y can be represented by

a parallel resonant circuit with equivalent
capacity C,. = 1/c and inductance L,.
= C/CJg2. The equivalent transmission line

for TE propagation in a plasma is shown in
Fig. l(b); for comparison the equivalent

transmission line for a waveguideb is shown
in Fig. l(a).

The transmission line shown in Fig.

1(b) offers a simple interpretation for the
phenomenon of plasma cutoff. lVhen

u > UP the displacement current exceeds the
conduction current and the shunt member
made up of the free-space capacitit,e sus-
ceptance and the plasma inductive sus-
ceptance is capacitive; in conjunction with
the free-space inductive series member this

‘=[l-%]l=[’-%l
where n. is the critical density correspond-
ing to a given a and n(z) is a function such

that n(z) = n. at z =zC.
Eq. (7) then becomes

+:’ + (:)2] E, = o. (4)
d,~z

1—-I-(:)’[1--;:- Ez=0.03)
dz%

We are interested in cylindrical waves that

propagate in the radial direction and go
over to the TEIO mode is rectangular wave-

guide as r+ co, in which case a2/as2 = O,
Ee=E. =0, E.#O.

Writing E,= R(r) Cl(e), separating vari-
ables and making use of the fact that the
tangential electric field must vanish at the
walls (o= A a), we obtain the azimuthal SOIU-

tion @ = cos ( m9/2 a ). The radial wave f unc-
tion is given by the Bessel equation

Examination of (5) and (8) suggests that a

correspondence can be established by writ-
ing tt(z) = nJsJz)2, in which case (8) be-

comes

which is the “normal” form of the Bessel

equation, with general solutionha J. D. Jackson, “Classical Electrody~amics, ”
John Wdey and Sons, Inc., New York, N. ~.: ~~62:

4 L. Spitzer, “Physics of FullY Ionized Gases,
Interscience Publishers. Inc., New York, N. Y : 196~;

$ S. A. Schelkunoff, “Electromagnetic Waves,
D. Van Nostrand Co., Inc., Princeton, N. J.; 1943.

~ E. Jahnke and F. Erode, “Tables of Fync~ions
with Formulae and Cur~cs, ” Dover pubbcat,Ons,
Inc., New York, N. Y.; 1945.
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where

P = [(zC/x)’ + 1/4]’/’ > 1/2.

Reference to the asymptotic expressing

d;J-p(kz) = Z“’-p,

which holds for z~O, shows that this part

of the solution must be rejected to obtain a
finite solution at the origin, corresponding

to the case in which the plasma is backed by
a metal wall as in Fig. 2(b).7 The solution for

the plasma with the inverse quadratic dens-
ity distribution is then

E. = <;J,(kz)

where P=zc/K (assuming s. >~).
Now, comparing (6) and (10) (with

o = O) we see that the waveguide and plasma
shown in Fig. 2 exhibit analogous behavior
with respect to a TE wave propagating to-
ward the origin. In particular, the wave

undergoes “reflection” in the neighborhood
of the critical density SCor the critical cross

section r.. Similarly, an evanescent wave

arises at the critical point and damps out

toward the origin. Thus, analog experiments

carried out with appropriate tapered-wave-
guide configurations appear to be useful for
simulating inhomogeneous plasma media in
the vicinity of critical densities. Such ex-
periments would require slowly-varying
taper structures in order to minimize effects
due to generation of spurious modes at
junctions with other microwave elements.
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T L. S. Taylor, “Reflection of a TE wave from an
inverse parabolic ionization density, ” IRE TRANS. ON
ANTENNAS AND PROPAGATION (Cowesjo?ldence), vol.
AP.9, pp. 582-583; November, 1961.

The Diffraction Loss Curve for

Nonconfocal Spherical

Mirrors

The diffraction loss curve vs Fresnel
number for confocal spherical mirrors was
shown by Fox and Lil and by Goubau and
Schwering.2 Boyd and Gordon’ suggested a
possibility of applying the above theory to a
nonconfocal mirror system, by assuming

the diffraction loss to be equal to that of an

equivalent confocal system having the same

Manuscrmt received December 17, 1963.
L .4. G, Fox and T. Li, “Resonant modes m a maser

inter ferometer, ” Bell SYS. Tech. J., vol. +0, PD. 453–
488; March, 1961.

~ G. Goubau and F. Scbwermg, “On the guided
propagation of electromagnetic wave beams,” 1RR
TRANS. ON ANTENNAS AND PROFAGATFON, PD. 248-
2S6; May, 1961.

a G. D. Boyd and .T. P. Gordon, ‘lConfocal multl-
mode resonator for millimeter through optical wave-
length masers,” J%+! .Sy.i. Te6h. J., vol. 40, pp. 489-
508; March, 1961.
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Fig. l—DdTractlon loss for a nonconfoca 1 system of
s~herical mmrors,

spot size. They proposed to express the dif-
fraction loss in term of the parameter

-%[2$ (3’11’2
in place of the conventional Fresnel num-

ber” N.
The approximation by Boyd and Gordon

has been found nearlv valid bv Fox and

Li’ for the range of 0;2b’ <d < ~.8b’ in the

calculation of infinite strip curved mirror

interferometers for N= 0.5.

Using the Boyd and Gordon approxi-
mation, the diffraction loss for a noncon-
focal system may be expressed as a function
of the above parameter, which can be modi-
fied to the form

N[2(3-’1”2
where

b’ =radius of curvature of mirrors

d =spacing between mirrors

N= Fresnel number
=a12/b[~

~‘ =radius of mirrors,

The above new parameter corresponds to
the Fresnel number N for a confocal sys-
tem, and the diffraction loss for a noncon-
focal system can be easily obtained using

the loss curve for a confocal s] stem by
replacing N to the form modified by the
factor

P(;)-11”2
On the other hand, it is sometimes re-

quired to calculate the variation of the dif-
fraction loss for a nouconfocal system with

4 A G. Fox and T. Li, “Modes in a maser inter-
ferometer with curved and tilted mirrors, V PROC.
IEEE, vol. 51, pp. SO–89; January, 1963.

the spacing between mirrors for constant
mirror curvature and wavelength. In such a

case, it seems more convenient to use the
new parameter N’ as defined by the formula

\Vith this parameter, the diffraction loss

for a nonconfocal system can be illustrated
for various values of N as shown in Fig, 1.

The solid line in the figure denotes the loss

curve for a confocal system for comparison.
These curves seem to have sufficient ac-

curacy in the range of 0.2b’ <d < 1.8 b’.
When the diffraction loss for a noncon-

focal system was measured for a variable
mirror spacing, the measured value should

be compared with the curve shown in Fig. 1,
not with the loss curve for a confocal system.

It is considered that the results of the meas-

urement made by Beyer and Scheibe5 may
be compared more adequately with the
curve in Fig. 1 for a given value of N.
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Semiconductor

Limiting Using

Switching and

3-db Short-

Slot (Hybrid) Couplers

The silver-bonded germanium varactor

diode has been successfully used as a switch

and a limiter of microwave power when

Operated in a series mode between 9.o and
9.6 Gc. 1 This report gives details of shunt
mode switching and limiting using these

same type diodes in conjunction with 3-db
short-slot (hybrid ) couplers. The technique

of using 3-db short-slot (hybrid) couplers,
but with other type diodes (e.g., 1N263,
MA-450, PIN’s), has been reported by other
in~,estigators. ‘–~

Fig. 1 is a diagrammatic illustration of

the short-slot (hybrid) coupler. If arms 1?

and C are terminated in perfectly matched
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