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Fig. 1—Simple frequency discriminator.
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Fig. 2—Quadrature frequency discriminator.

Several advantages of the arrangement
may be quoted:

1) An (7, 8) display can be used so that
0% ¢ f,

2} Using an (7, 8) display, 6 continuously
and linearly increases with frequency
over any range, although, of course,
ambiguities occur in a range of ¢
exceeding 2. “Clock” systems to give
increased accuracy without ambiguity
are possible. In this context, fre-
quency ranges representing 2nmw <¢
<2(n+1)x of 10 Mc and 10,000 Mc
are equally practicable.

3) 1Bl | Baf3= || — | Byl when Fu=
cos ¢/2 and E.=sin ¢/2 so that
errors due to departure from square
law in the detector characteristics are
very small.

4) The subtraction | Ei|2—| E;|? may be
written

(B4 E"--2E'E cos ¢) — (E/*+E'"
—2E'E" cos ¢)=4E'E" cos ¢

where E’ and E’’ are the input volt-
ages to a phase-measuring hybrid
junction, and E’sE’. It may be
shown that the product (E’E’’), for
both the phase measuring junctions,
shown in Fig. 2, is not dependent
upon equality of power split in the
power dividing junctions and that
therefore this equality is not neces-
sary for good frequency measuring
performance.

It should be noted that the four-junction
circuit, giving the sine and cosine terms, is
the same as that for a single-sideband modu-
lator and is one of a large family of multi-
port networks that might be used in phase
comparison applications. For example, an
eight detector device giving cos ¢, cos (¢
+u/4), cos (¢p+7/2) and cos (¢p+37/4) out-
puts can easily be realized. Such an arrange-
ment shows improved measuring accuracy
by removing quadrantal error terms.

STEPHEN J. ROBINSON
Systems Division
Mullard Research Labs.
Redhill, Surrey, England
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Harmonic Generation
by an Array

In the millimeter region, harmonic gen-
erators have long served as convenient
signal sources. However, the power handling
capacity of the diode elements is very lim-
ited. At the short-wave end of the milli-
meter spectrum, the dominant mode wave-
guide terminal of a harmonic generator may
also be less desirable than a quasi-optical or
beam output. These factors have led to the
investigation of a diode array as a millimeter
wave source. The results obtained show that
such an array is feasible but uneconomic
with presently available diodes.

A schematic diagram of a harmonic ar-
ray is shown in Fig. 1. The fundamental
power illuminates an array of receiving
apertures from a feed horn which may be
extended (as shown by the broken lines)
to shield the entire input region, if desired.
Depending on the spacing between feed and
array, it may be necessary to introduce
phase correction by means of a lens, or by
changing the lengths of input waveguide in
each multiplier unit. These units consist of
a receiving or input horn coupled to an
inline harmonic generator. The output
guide is proportioned to pass only the de-
sired harmonic and higher terms which
are neglected. Each output horn occupies
the same cross section as the corresponding
input aperture. This provides grating lobe
suppression, since a narrower element pat-
tern compensates for the wider spacing at
the output frequency. The output is in the
form of a beam, which can be brought to a
focus by choosing the proper phase correc-
tion on either the input or output side of the
array.

A\
AW

Fig. 1—Harmonic array.

To investigate the properties of a har-
monic array, a 2X$§ element array was con-
structed for fo=25 Gc, n=2. A very simple
straight-through element, as shown in Fig. 2,
was used. The individual crystals produced
an input VSWR between 4:1 and 6:1 in
this mount. Measurements on individual
elements showed that the standard devia-
tions in insertion phase shift and conversion
loss were less than 25° and 1.7 db respec-
tively for the 27 individual 1N26 crystals
tested. The harmonic output of the array
was within 1 db of the output calculated for
the sum of the individual elements, each
with the measured VSWR, and illumination
corrections applied. It was therefore con-
cluded that a harmonic array functions as a

Manuscript received December 10, 1963. The
work described here was performed under Contract
No. AF 19 (628)-397 for the Air Force Cambridge Re-
search Laboratories, Bedford, Mass.
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Fig. 2—Harmonic array element.

Fig. 3—Ten element harmonic array.

true additive structure. The array is shown
in Fig, 3.

The performance of the experimental
array shows conversion and coupling losses
of about 20 db and 6 db respectively. With
provisions for impedance matching in the
elements, and with more efficient harmonic
generators, a useful array source for milli-

meter and possibly submillimeter power
might be constructed.

D. D. Kinc

F. SoBeL

J. W. Dozier

Research Div.
Electronic Communications, Inc.
Timonium, Md.

Analogous Propagation Modes in
Inhomogeneous Plasma and
Tapered Waveguide

An interesting analogy exists between
the propagation of transverse electromag-
netic (TE) waves in a plasma (with no mag-
netic field) and in conventional waveguide.l2
This analogy reflects the similar roles played
by the volume conduction current in the
plasma and the wall conduction current in
the waveguide and is of interest in that it
provides insight into plasma propagation
and suggests the possibility of simulating

Manuscript received July 19, 1963; revised De-
cember 16, 1963. This work was performed under the
auspices of the U. S. Atomic Energy Commission.

1V, L. Ginzburg, “Propagation of Electromagnetic
Waves in Plasma,” Gordon and Breach Publishers,
Inc., New York, N. Y.; 1962,

2W. Rotman, “Plasma simulation by artificial
dielectrics and parallel-plate media,” IRE TRANS. ON
ANTENNAS AND PROPAGATION, vol. AP-10, pp. 82-95 R
January, 1962.
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certain microwave properties of inhomo-
geneous plasma by means of appropriate
waveguide configurations.

Consider a rectangular waveguide with
short dimension (b) in the x direction, long
dimension (a) in the y direction, and axis
in the z direction. Propagation in the TEjo
mode is described by the wave equation?

e (-0 o

where the cutoff frequency w.=wc/a and ¢
is the velocity of light.

Similarly, propagation of a TE wave in
the z direction in an infinite plasma is de-
scribed by the equation*

e () [ ()0 o

where theplasma frequency w, = (4rne?/m)1/2.
The plasma wave equation (2) is formally
identical with the waveguide equation (1)
with the plasma frequency w, playing the
role of the cutoff frequency w,.

In what follows it will be found instruc-
tive to develop the equivalent transmission
line for TE propagation in an infinite
plasma. We first write the two Maxwell
curl equations for a plane wave propagating
in the z direction:

dH, [47r ne? i iw]
il AP NG I

9z cC M w [4
oL, Tw

= -—H,, 3)
[i4 4

where use has been made of the relation
8j/0t=(ne?/m)E.* The equivalent line volt-
age Vand current [ are related to the elec-
tric and magnetic fields [by appropriate
constants of proportionality that are con-
ventionally adjusted to make the average
propagated power equal to the product of
the equivalent voltage and current, but
these constants need not be evaluated in the
present case. Writing (3) in terms of V and
I we obtain the equations

9 7 av iw
— = const — (wp? — wH)V; —— = const — [
0z wC 9z cs
which are to be compared with the standard
transmission-line equations él/dz=—1V
and 9V/dz=—ZI. Evidently the admit-
tance of the plasma ¥ can be represented by
a parallel resonant circuit with equivalent
capacity Ceq=1/c¢ and inductance Leq
=c/wy2. The equivalent transmission line
for TE propagation in a plasma is shown in
Fig. 1(b); for comparison the equivalent
transmission line for a waveguide® is shown
in Fig. 1(a).

The transmission line shown in Fig.
1(b) offers a simple interpretation for the
phenomenon of plasma cutoff. When
w>w, the displacement current exceeds the
conduction current and the shunt member
made up of the free-space capacitive sus-
ceptance and the plasma inductive sus-
ceptance is capacitive; in conjunction with
the free-space inductive series member this

3J. D. Jackson, “Classical Electrodynamics,”
John Wiley and Sons, Inc., New York, N. Y., 1962.
4 1L,. Spitzer, “Physics of Fully Ionized Gases,”
Interscience Publishers, Inc., New York, N. Y : 1962,
$S. A. Schelkunoff, “Electromagnetic Waves,”
D. Van Nostrand Co., Inc., Princeton, N. J.; 1943.
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Fig. 1—Equivalent transmission lines. (a) For
waveguide. (b) For plasma,

shunt member can support propagation.
When w<w,, however, the shunt member
becomes inductive and the system can
not support propagation.

Further insight into the analogy be-
tween plasma and waveguide propagation
can be gained by examining the displace-
ment current and the conduction current in
the two cases (Fig. 1). In the waveguide
case the transverse conduction current
flowing in the walls is —(2wic/wab)V and
the transverse displacement current is
(2iaw/wbc) V.5 Propagation occurs at fre-
quencies such that the displacement current
exceeds the conduction current; cutoff occurs
when the two are equal, <.e., w,==c/a, as in
(1) above. This criterion is, in fact, a way of
defining cutoff in a waveguide. Similar rela-
tions hold in a plasma. The difference is
essentially one of geometry. The conduction
current and displacement current flow in the
same volume in the plasma whereas the
conduction current in a waveguide is con-
fined to the walls while the displacement
current is concentrated at the center.

The foregoing considerations indicate
the possibility of simulating certain prop-
erties of inhomogeneous plasma by the use
of waveguides with varying cross section.
To analyze this possibility we find it con-
venient to use the radial waveguide (sectoral
horn) configuration shown in Fig. 2(a),
writing the wave equation in cylindrical
coordinates:

[r 6r( ar) 2 902
toat(5)]m=o @

We are interested in cylindrical waves that
propagate in the radial direction and go
over to the TE;) mode is rectangular wave-
guide as r—w, in which case 9%/952=0,
Ey=E,.=0, E.=#0.

Writing E.= R(r) ©(8), separating vari-
ables and making use of the fact that the
tangential electric field must vanish at the
walls (6= + a), we obtain the azimuthal solu-
tion ® =cos (78/2«). The radial wave func-
tion is given by the Bessel equation

#R, 1 4R [()-——]R~o )

1 92

dr2 r
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Fig. 2—(a) Tapered waveguide. (b) Equivalent
plasma density distribution,

and the solution that remains finite at the
origin is R=J,(kr) where k=w/c and
uw=27/a. The quantity u can also be written
in terms of 7., the “turning point,” i.e., the
value of r at which the last term in (5)
vanishes; the solution for the radial wave-
guide problem is then

E, = AJu(kr) cos ub 6)

where u=r./A and A=\/27.

We now consider the wave equation for
propagation of TE waves in an inhomo-
geneous plasma whose density is a function
of z only:

VIE — V(v-E) — <-u—;-)2e(w, NE=0. (7)

We are interested in propagation at normal
incidence [Fig. 2(b)] so that E,=E,=0,
8/0x=08/0y=0, V-E=0E,/ox=0; the ef-
fective dielectric constant for the inhomo-
geneous plasma is given by

n(_zz:l

e

[ o-

where #, is the critical density correspond-
ing to a given w and n(z) is a function such
that #(z) =#,at z=2,.

Eq. (7) then becomes

Er ) [-Am0 o

Examination of (5) and (8) suggests that a
correspondence can be established by writ-
ing n(z)=nd2/5)? in which case (8) be-

COomes
ﬁ&+hz
dz?

LTk PR

which is the “normal” form of the Bessel
equation, with general solution®
¢ E. Jahnke and F. Emde, “Tables of Functions

with Formulae and Curves.” Dover Publications,
Inc., New York, N. Y.; 1945.
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Ex = A5 Tp(ks) + B3] p(k3)
where
p = [G/R?+ 1/4]2 > 1/2.

Reference to the asymptotic expression®

VS p(ks) = g12r,

which holds for z—0, shows that this part
of the solution must be rejected to obtain a
finite solution at the origin, corresponding
to the case in which the plasma is backed by
a metal wall as in Fig. 2(b).” The solution for
the plasma with the inverse quadratic dens-
ity distribution is then

E, = /27 ,(k2)

where p~z./A (assuming 2. >RK).

Now, comparing (6) and (10) (with
§=0) we see that the waveguide and plasma
shown in Fig. 2 exhibit analogous behavior
with respect to a TE wave propagating to-
ward the origin. In particular, the wave
undergoes “reflection” in the neighborhood
of the critical density z, or the critical cross
section 7. Similarly, an evanescent wave
arises at the critical point and damps out
toward the origin. Thus, analog experiments
carried out with appropriate tapered-wave-
guide configurations appear to be useful for
simulating inhomogeneous plasma media in
the vicinity of critical densities. Such ex-
periments would require slowly-varying
taper structures in order to minimize effects
due to generation of spurious modes at
junctions with other microwave elements.

HERBERT LASHINSKY
Plasma Physics Lab.
Princeton University

Princeton, N. J.

7L. S. Taylor, “Reflection of a TE wave from an
inverse parabolic ionization density,” IRE TRANS. ON
ANTENNAS AND PROPAGATION (Correspondence), vol.
AP-9, pp. 582-583; November, 1961.

The Diffraction Loss Curve for
Nonconfocal Spherical
Mirrors

The diffraction loss curve vs Fresnel
number for confocal spherical mirrors was
shown by Fox and Li! and by Goubau and
Schwering.? Boyd and Gordon?® suggested a
possibility of applying the above theory to a
nonconfocal mirror system, by assuming
the diffraction loss to be equal to that of an
equivalent confocal system having the same

Manuscript received December 17, 1963,

1 A. G.Foxand T. Li, “Resonant modes in a maser
interferometer,” Bell Sys. Tech. J., vol. 40, pp. 453—
488; March, 1961.

2 G. Goubau and F. Schwering, “On the guided
propagation of electromagnetic wave beams,” IRE
TRANS. ON ANTENNAS AND PROPAGATION, pD. 248—
256; May, 1961.

3 G. D. Boyd and J. P. Gordon, “Confocal multi-
mode resonator for millimeter through optical wave-
length masers,” Bell Sys. Tech. J., vol. 40, pp. 489—
508; March, 1961.
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Confocal Mirrors
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Fig, 1—Duffraction loss for a nonconfocal system of
spherical mirrors.

spot size. They proposed to express the dif-
fraction loss in term of the parameter

a/2 d d 2 /2
w27 - ()]
in place of the conventional Fresnel num-
ber N.

The approximation by Boyd and Gordon
has been found nearly valid by Fox and
Lit for the range of 0.2b'<d <1.85" in the
calculation of infinite strip curved mirror
interferometers for ¥=0.5.

Using the Boyd and Gordon approxi-
mation, the diffraction loss for a noncon-
focal system may be expressed as a function
of the above parameter, which can be modi-
fied to the form

s[2(7) -]

b’ =radius of curvature of mirrors
d =spacing between mirrors
N =Fresnel number
=a’?/b'\
a’=radius of mirrors.

where

The above new parameter corresponds to
the Fresnel number N for a confocal sys-
tem, and the diffraction loss for a noncon-
focal system can be easily obtained using
the loss curve for a confocal system by
replacing N to the form modified by the

factor
b 1/2
() -]
d

On the other hand, it is sometimes re-
quired to calculate the variation of the dif-
fraction loss for a nonconfocal system with

4A G. Foxand T. Li, “Modes in a maser inter-

ferometer with curved and tilted mirrors,” Proc.
IEEE, vol. 51, pp. 80-89; January, 1963.
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the spacing between mirrors for constant

mirror curvature and wavelength. In such a

case, it seems more convenient to use the

new parameter N’ as defined by the formula
a’?

N o= —.
dn

With this parameter, the diffraction loss
for a nonconfocal system can be illustrated
for various values of NV as shown in Fig. 1.
The solid line in the figure denotes the loss
curve for a confocal system for comparison.
These curves seem to have sufficient ac-
curacy in the range of 0.2b' <d <1.8b’.

When the diffraction loss for a noncon-
focal system was measured for a variable
mirror spacing, the measured value should
be compared with the curve shown in Fig. 1,
not with the loss curve for a confocal system.
It is considered that the results of the meas-
urement made by Beyer and Scheibed may
be compared more adequately with the
curve in Fig. 1 for a given value of N.
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Semiconductor Switching and
Limiting Using 3-db Short-
Slot (Hybrid) Couplers

The silver-bonded germanium varactor
diode has been successfully used as a switch
and a limiter of microwave power when
operated in a series mode between 9.0 and
9.6 Gce.! This report gives details of shunt
mode switching and limiting using these
same type diodes in conjunction with 3-db
short-slot (hybrid) couplers. The technique
of using 3-db short-slot (hybrid) couplers,
but with other tvpe diodes (e.g., 1N263,
MA-450, PIN’s), has been reported by other
investigators.2™*

Fig. 1 is a diagrammatic illustration of
the short-slot (hybrid) coupler. If arms B
and C are terminated in perfectly matched
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